LindormVectorStore
This notebook covers how to get started with the Lindorm vector store.
Setup
To access Lindorm vector stores you'll need to create a Lindorm account, get the ak/sk, and install the langchain-lindorm-integration
integration package.
%pip install -qU "langchain-lindorm-integration"
Credentials
Head to here to sign up to Lindorm and generate the ak/sk.
import os
class Config:
SEARCH_ENDPOINT = os.environ.get("SEARCH_ENDPOINT", "SEARCH_ENDPOINT")
SEARCH_USERNAME = os.environ.get("SEARCH_USERNAME", "root")
SEARCH_PWD = os.environ.get("SEARCH_PASSWORD", "<PASSWORD>")
AI_LLM_ENDPOINT = os.environ.get("AI_ENDPOINT", "<AI_ENDPOINT>")
AI_USERNAME = os.environ.get("AI_USERNAME", "root")
AI_PWD = os.environ.get("AI_PASSWORD", "<PASSWORD>")
AI_DEFAULT_EMBEDDING_MODEL = "bge_m3_model" # set to your model
Initialization
import EmbeddingTabs from "@theme/EmbeddingTabs";
<EmbeddingTabs/>
here we use the embedding model deployed on Lindorm AI Service.
from langchain_lindorm_integration.embeddings import LindormAIEmbeddings
from langchain_lindorm_integration.vectorstores import LindormVectorStore
embeddings = LindormAIEmbeddings(
endpoint=Config.AI_LLM_ENDPOINT,
username=Config.AI_USERNAME,
password=Config.AI_PWD,
model_name=Config.AI_DEFAULT_EMBEDDING_MODEL,
)
index = "test_index"
vector = embeddings.embed_query("hello word")
dimension = len(vector)
vector_store = LindormVectorStore(
lindorm_search_url=Config.SEARCH_ENDPOINT,
embedding=embeddings,
http_auth=(Config.SEARCH_USERNAME, Config.SEARCH_PWD),
dimension=dimension,
embeddings=embeddings,
index_name=index,
)
Manage vector store
Add items to vector store
from langchain_core.documents import Document
document_1 = Document(page_content="foo", metadata={"source": "https://example.com"})
document_2 = Document(page_content="bar", metadata={"source": "https://example.com"})
document_3 = Document(page_content="baz", metadata={"source": "https://example.com"})
documents = [document_1, document_2, document_3]
vector_store.add_documents(documents=documents, ids=["1", "2", "3"])
['1', '2', '3']
Delete items from vector store
vector_store.delete(ids=["3"])
{'took': 400,
'timed_out': False,
'total': 1,
'deleted': 1,
'batches': 1,
'version_conflicts': 0,
'noops': 0,
'retries': {'bulk': 0, 'search': 0},
'throttled_millis': 0,
'requests_per_second': -1.0,
'throttled_until_millis': 0,
'failures': []}
Query vector store
Once your vector store has been created and the relevant documents have been added you will most likely wish to query it during the running of your chain or agent.
Query directly
Performing a simple similarity search can be done as follows:
results = vector_store.similarity_search(query="thud", k=1)
for doc in results:
print(f"* {doc.page_content} [{doc.metadata}]")
* foo [{'source': 'https://example.com'}]
If you want to execute a similarity search and receive the corresponding scores you can run:
results = vector_store.similarity_search_with_score(query="thud", k=1)
for doc, score in results:
print(f"* [SIM={score:3f}] {doc.page_content} [{doc.metadata}]")
* [SIM=0.671268] foo [{'source': 'https://example.com'}]
Usage for retrieval-augmented generation
For guides on how to use this vector store for retrieval-augmented generation (RAG), see the following sections:
API reference
For detailed documentation of all LindormVectorStore features and configurations head to the API reference.
Related
- Vector store conceptual guide
- Vector store how-to guides